2很简单,试一下就出来了
3.若否,则存正整数N≥3,对n>N,an>0(n>N≥3故an是绝对值差≥0)
此时在n>N时,an+2=|an+1-an|<max{an,an+1},同理有an+3<max{an+2,an+1}<max{max{an,an+1},an+1}=max{an,an+1},由此得max{an+3,an+2}<max{an,an+1},计cn=max{an,an+1},则cn>cn+2>cn+4>...无穷递降,而cn是正整数,cn>0,矛盾!故数列中必有无穷多个0
3.若否,则存正整数N≥3,对n>N,an>0(n>N≥3故an是绝对值差≥0)
此时在n>N时,an+2=|an+1-an|<max{an,an+1},同理有an+3<max{an+2,an+1}<max{max{an,an+1},an+1}=max{an,an+1},由此得max{an+3,an+2}<max{an,an+1},计cn=max{an,an+1},则cn>cn+2>cn+4>...无穷递降,而cn是正整数,cn>0,矛盾!故数列中必有无穷多个0