f(x)=∫(0 to x)f'(x)dx f(x)=∫(1 to x)f'(x)dx |f(x)|=0.5|∫(0 to x)f'(x)dx|+0.5|∫(1 to x)f'(x)dx| ≤0.5∫(0 to x)|f'(x)|dx+0.5∫(1 to x)|f'(x)|dx =0.5∫(0 to 1)|f'(x)|dx 即有:|f(x)|≤0.5∫(0 to 1)|f'(x)|dx 同时平方,有: f²(x)≤0.25(∫(0 to 1)|f'(x)|dx)²≤0.25∫(0 to 1)|f'(x)|²dx 两边同时对x在(0,1)区间积分即得证。